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J. Phys. A: Math: Gen. 15 (1982) 2911-2927. Printed in Great Britain 

Scale-covariant field theories: I. Overview 

J M Ebbutt and R J Rivers 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, England 

Received 22 February 1982 

Abstract. We examine some of the problems with scale-covariant quantum field theories, 
as developed by Klauder, and summarise our progress in solving them. 

1. Introduction 

This is the first of a series of papers (Ebbutt and Rivers 1982a, b,c,d) (henceforth 
known as 11, 111, IV, V respectively) in which we examine some aspects of scale- 
covariant quantum field theory, as developed by Klauder in several pioneering papers 
over the last decade. (For a review of Klauder’s work see Klauder (1979a, b) and 
references therein.) 

Scale-covariant quantisation is intended to give an understanding of the problems 
of ultraviolet non-renormalisable field theories. Independent of the computational 
scheme to be adopted, it is argued that, in the path integral formulation of such 
theories, certain paths that are available to the field in the free theory become 
inadmissible. That is, the functional measure has to be changed, the translation- 
invariant measures of the renormalisable canonical theory being replaced by scale- 
covariant measures. 

This choice of scale-covariant measures is motivated by the operator-product 
expansion (Klauder 1979b, 1981a) and leads to affine commutation relations (as 
distinct from normal ordering of the operator products which leads to canonical 
commutation relations). 

We thus wish to calculate formal path integrals of the kind (taking the Euclidean 
theory as an example) 

ZbI=  I W41 exp -(A[41-i I h4) (1.1) 

where A is a classical action, and 9 ’ [4 ]  the scale-covariant measure satisfying 

9’[A41= m1w41 for A(x) >0, Yx. (1.2) 
Empirically, we know that only Gaussian measures can be integrated. Since 9 ’ [4 ]  

can be formally expressed (non-uniquely) in terms of the translation-invariant measure 
9[4],  satisfying 

(1.4) 

0305-4470/82/092911+ 17$02.00 @ 1982 The Institute of Physics 2911 



2912 J M Ebbutt and R J Rivers 

we see that there is nothing overtly Gaussian about (1.1). Not surprisingly, scale- 
covariant integrals like (1.1) have proved markedly resistant to solution. 

We can break the problem down into two parts. Firstly, we can try to solve (1.1) 
for a quadratic A [ 4 ] :  

This describes the pseudo-free theory, most conveniently thought of as the A + 0 limit 
of a theory with 4 self-interaction coupling strength A t. To be specific, we shall only 
consider the Ad interaction with action 

Secondly, the assumption is made that we use the pseudo-free theory as a basis 
for developing a solution for the interacting theory. In particular, we might wish to 
establish a perturbation series in A for the interacting theory about the pseudo-free 
theory. 

In this paper we shall examine some of the problems with the pseudo-free and 
interacting scale-covariant theories with actions (1.5) and (1.6) and provide a summary 
of our progress in understanding them. The reader is referred to our work (Ebbutt 
and Rivers 1982a, b, c, d) for the detailed arguments. In general, our approach does 
not overlap very much with the existing literature on scale-covariant theories, although 
we are in continual debt to the work of Klauder (1979a, b, 1981a, b). 

We have been primarily concerned with the following interrelated problems. 
(i) Does the notion of discontinuous perturbations make sense in principle? That 

is, can we develop the perturbation series in A for the scale-covariant theory with 
action (1.6) about the pseudo-free theory with action (1.5)? It has been argued by 
Nouri-Moghadam and Yoshirnura (1978a) that Klauder’s equations are so degenerate 
that it is not possible to develop such a series from them alone. 

(ii) Can we develop some general understanding from particular cases? For 
example, Klauder (1977) has studied the effect of having a scale-invariant measure 
(i.e. p = 1 in (1.4)) in some detail). For this particular choice of /3 we see that, by 
introducing the auxiliary field x, the scale-invariant measure is re-expressed in terms 
of translation-invariant measures 9[43, 9 L y l  as 

(1.7) 

We expect that insofar as (1.7) can be interpreted as an expression of a ‘hard-core’ 
interaction the augmented formalism should permit greater physical insight. As we 
shall see, the case p = 1 arises naturally in some approximation schemes. 

(iii) Does the change of measure affect the stability of the theory? This question 
is motivated by the observation that an alternative way to display the ‘hard-core’ is 

t It was the notion of discontinuous perturbations (that switching off the interaction term in a non- 
renormalisable theory did not give the corresponding free theory) that was one of the basic ideas in 
developing scale-covariant theories. From this viewpoint, the failure of orthodox perturbation theory to 
control the ultraviolet infinities of non-renormalisable theories arises because we are expanding about the 
incorrect theory. 



Scale-covariant field theories: I 2913 

to write 9’[4] in terms of translation-invariant measures as 

This has the interpretation of changing the ‘classical’ potential (for the translation- 
covariant theory) from V(4) to (formally) 

~ ’ ( 4 ) =  v ( $ ) + $ ~ s ( o ) I ~ ~ ~ .  (1.9) 
As 4 + 0, V’(4) becomes unbounded below, suggesting instability. 

(iv) So far, we have been mainly concerned with the pseudo-free theory. We shall 
.see, in examining (ii) above, that the most convenient way to order contributions does 
not lend itself naturally to a A-perturbation expansion. Rather, we have something 
more akin to mean-field or 1/N expansionst. This suggests that a more fruitful way 
of tackling the interacting scale-covariant theory will be via 1/N-type expansions, 
rather than pseudo-perturbation theory. Nonetheless, these expansions are not wholly 
unrelated to the pseudo-free theory. The large-N limit of the generalised O ( N )  theory 
is the last problem that we shall approach in this sequence of papers. 

We conclude with the observation that all the above is not merely a pedagogic 
exercise. In quantum gravity we still have a theory in which renormalisation is poorly 
understood. Indeed, it has been argued that scale-covariant quantisation is particularly 
appropriate to gravity (Klauder 1970). A recent review article by Isham (1982) 
summarises these arguments succinctly. A solvable model using these ideas has been 
developed by Pilati (1981, 1982). 

There is yet a further point. Grand unification has given rise to very large mass 
scales. It is arguable that, whatever the nature of the ultimate theory, at energies 
very much below these mass scales all theories are effectively renormalisable. It has 
been stated (without proof) (Nouri-Moghadam and Yoshimura 1979) that scale- 
invariant theories for which a mass scale M can arise naturally can show this behaviour. 
That is, there may be a large-it4 limit in which the scale-covariant theory can be 
identified with a translation-covariant theory. This would act to blur the distinction 
between renormalisable and non-renormalisable theories, and terminate a preoccupa- 
tion that has dogged quantum field theory since its creation. 

2. The scale-covariant equations and their pseudo-perturbation expansion 

Consider the scale-covariant Euclidean theory of a single scalar field q5 with generating 
functional 

where 9’[4] is normalised so that Z’[O] = 1. 

nected Green functions 
As always, functional integrals are deceptive in their implications for the uncon- 

1 S”Z’[h] 
in Sh(xl). . . Sh(x,) h=O 

G,(x~. . . x , ) = -  

t In this way a mismatch between the incompatible definitions of operator products implied by scale- 
covariant and translation-covariant formalisms is avoided. 
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and the connected Green functions 

W,(Xl . . . x , )  =- 12.31 

of the theory. Any exactly solvable models assume great importance in that they can 
give insight on the more realistic theory (2.1). 

The only exactly solvable Euclidean-covariant model (for non-zero mo, A(,) is the 
independent-value model (IVM) in which the kinetic term is discarded, with generating 
functional 

J J 
12.4) 

Since a Fock-space solution exists, it is known how to interpret the path integral, and 
it is found that 9 ’ [4 ]  is scale-invariant (i.e. ,B = 1) for this important case. 

Firstly, it is found that the equation satisfied by 26 [ h ]  has the form 

where : : denotes the subtraction procedure 

12.5) 

Secondly, the linear formal equations for the unconnected Green functions 
G,(xl  . . . x , )  that follow from (2.5) are also satisfied by the connected Green functions 
W,(xl  . . . x , ) .  This is because, for the IVM, the W become progressively more multi- 
plicatively singular as more points are made coincident, as ( x ,  # x ,  # x )  

w n + p ( x x x x  * . . xx1 . . . x p )  = 6” - ‘ ( 0 ) ~ n + p ( X X X ,  . . xx1 . . . x p \  ( 2 . 7 )  

where W is finite. 
Reverting to the original theory (2.1) we assume similar properties. 
Adopting the same subtraction procedure gives rise to the equations 

with K, = - V t +  mi .  
Further assuming that the W, get multiplicatively more singular, the greater the 

number of coincident points, equation (2.8) will give rise to linear equations for the 
W,. These are 

( 2  6(x - x r ) )  W 2 m ( ~ I  . . . x2,)-lim KxW2m+2(x’xxl . . . SZ,,~ i 
x + x  r = l  

-4h,-,Wzm+4(xxxxx1.. . x Z m j = O  m a l  

where we assume W2m+l = 0 .  
They are represented diagrammatically in figure 1. 

12.9i 
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= 0 121 

I ’x 
X I  

Figure 1. The diagrammatic description of the scale-covariant equations (2.9). Full lines 
denote q5 fields. Circles denote connected Green functions. Broken lines denote S 
functions. 

These equations were examined in some detail by Nouri-Moghadam and 
Yoshimura (1978a). They concluded that they were so degenerate as to prohibit the 
unique development of a A-perturbation series about the pseudo-free theory. That 
is, if 

( W 2 n ) A  =c W:P,)AP (2.10) 
P 

denotes the asymptotic perturbation series in A, the WF” cannot be obtained 
uniquely, via (2.9), from the WE’. 

If correct this would have dramatic consequences, provided equation (2.8) 
expressed the total content of the functional integral (2.1). In paper I1 of this series 
we have re-examined this problem in some detail. A summary of our conclusion is 
presented below. 

The first point to make is that requiring the perturbation series to exist order by 
order (and ignoring the problem of the resummation of the ( W2n)A) is equivalent to 
imposing boundary conditions on (2.8). These serve to reduce the degeneracy of the 
equations for the W:.,‘?. Although the situation is not as bad as presented in 
(Nouri-Moghadam and Yoshimura 1978a), the conclusion that the W:p,‘ are not 
uniquely determined is correct. 

We therefore need to supplement equations (2.9) in some way. One way is to 
impose the analogue of the renormalisation group and Callan-Symanzik equations. 
To see how this could work, we found it instructive to contrast the IVM of (2.4) with 
the translation-covariant static ultra-local model (SULM) of Caianiello and Scarpetta 

t For example, in the Schwinger-Dyson equations for the canonical translation-covariant theory, W, is 
completely undetermined, but ( W2)A is uniquely determined. 
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(1974a, b), with regularised generating functional 

Z [ h ]  = I 9[4] exp -1 dx(im$#J2 + hod4 - ihd).  (2.1 1) 

Our conclusions are presented in tables 1 and 2. We see that, whereas the 
renormalisation-group-like (RG) equations contain no further information for the 
translation-covariant perturbation series, they provide much more for the scale- 
covariant perturbation series. The end result is that the scale-covariant perturbation 
series is determined up to an overall scale parameter, as we know from direct 
calculation. 

We expect similar conclusions to be applicable to the more realistic scale-covariant 
theory of (2.1). That is, in principle the path integral (2.1) contains more information 
than is given in (2.9) and this can be expressed in renormalisation-group-type 
equations. However, we do not understand Tenormalisation well enough for scale- 
covariant theory to utilise this information. 

There is an alternative approach to the problem of supplementing equations (2.9), 
with essentially the same information content?, for the particular case of the scale- 
invariant measure with p = 1. Despite the results of the IVM (for which p = 1) we 

Table 1. The perturbation series for the ULM. 

Wz completely undetermined A-perturbation series (not uniquely summable) 

i RG 
equations 

W ,  determined up to a All ( W,)  uniquely determined 
A-perturbation series 

Table 2. The perturbation series for the IVM. 

General Solution: W2, W,  
completely undetermined 

RG 
equations 

W,, W, determined up to 
two parameters 

(W2) completely undetermined. 
( W,) * ( W2)-' uniquely determined 

(not uniquely summable) 
A-perturbation series 

equations 

arbitrary scale parameter 
(( W,)  (Wz)-' uniquely summable) 

A-perturbation series 

t In the limited sense of which W, are unconstrained. 
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might consider dropping the subtraction procedure for this case, to give rise to the 
additional dynamical equation 

(2.12) ljm Kx W2m+2(x'xxl . . . xzm)i-4ho W 2 m + 4 ( ~ ~ ~ ~ ~ 1  . . . xzm) = 0 
x -x 

displayed diagrammatically in figure 2. 

h"-J3 + 4 A O X @  = 0 
X' 

F i p e  2. The diagrammatic description of the additional equation (2.12). 

We now have a situation in which, once Wko) is given, all other W:p,' cease to be 
arbitrary?. 

There is no analogue of (2.12) for the IVM, so we must assume that, in this case, 
the IVM is untypical. A discussion of (2.12) is the essential content of the next section. 

3. The augmented theory 

We need an alternative approach to equations (2.9). One possibility proposed by 
Klauder for the scale-invariant case of p = 1 only, is to replace Z'[h]  by the augmented 
generating functional 

Z'[h,  j l=  J 9[419Lylexp -J d x ( 6 @ ~ ) 2 + ~ m ~ 4 2 + A o 4 4 + ~ ~ # 2 ~ 2 - i h 4  -ijX). (3.1) 

We see that, on setting j = 0 in (3.1) and performing the Gaussian integration, we 
reproduce Z'[h] of (2.1). 

However, the equations of motion satisfied by (3.1) are expected (by virtue of the 
translation covariance) to be 

and 

(3.2) 

In terms of the unconnected Green functions 

the equations following from (3.2) and (3.3) are 
q + l  

r = l  
1 S(X - y r ) G p , q - l ( x I  * ~ p ;  ~ 1 -  * * fr * .  * yq)-vGp+2,q+1(XXX1. x p ;  x y l .  * y q )  

= O  e v e n p a 0 , o d d q a l  (3.5) 

t We have not been concerned here with the 'ascending' problem of how to determine the W,,, n > 1, in 
terms of W,. Nouri-Moghadam and Yoshimura (1978a) comment on this problem. 



2918 J M Ebbutt and R J Ri,vers 

Equations (3.5) and (3.6), displayed in figure 3, contain equations (2.9) as a special 
case. Also, from (3.5) ( p  = 0, q = 1) and (3.6) ( p  = 1, q = 0) we have 

KXG2(xy) + ~ [ G ~ ( x x  ; X Y )  - G z ( x y  ; XX)] + ~ A ~ G ~ ( x x x ~ )  0 (3.7) 

implying the critical equation (2.12) on taking x = y t. 
In understanding how equations (3.7) (and (2.12)) inevitably arise in the augmented 

formalism it is sufficient to consider the pseudo-free theory (Ao  = 0) for which equation 

Dynomicol 

i K, P tm21  

Constro in t  

Y2 &Y3 Yl 4 Y*Yz 
x ------- y1 x ---- - y,x------  Y3 

Figure 3. The diagrammatic description of the augmented equations (3.5) and (3 .6) .  The 
straight lines correspond to q5 fields, the wavy lines to the auxiliary x fields. Circles now 
denote unconnected Green functions. 

t For some reason it was argued in Nouri-Moghadam and Yoshimura (1978a) that the augmented formalism 
contained no new information. 
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(2.12) becomes 

Until now this has been considered an unacceptable constraint. In paper I11 of 
this series we examine the pseudo-free equation (3.8) in detail. We summarise our 
conclusions below. 

Firstly, by assuming the spectral representation for Gz 

d a  P b )  
G2(x - y )  = bk exp[ik(x - y ) ]  - k 2 + v  

equation (3.8) can be formally expressed as 

m i  = ITt - S (O) /  G 2 ( 0 )  

where 

with 

dk eikax 
G & ; m  )=  2. 

\ k  + m  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Equation (3.8), via (3.10), can be understood as a self-consistent additive mass 
renormalisation. This interpretation is given more credence by the following argu- 
ments, each of which is given more fully in 111. 

3.1. Diagrammatic expansion of the pseudo-free augmented generating functional 

Performing the Gaussian q5 integration in the pseudo-free augmented generating 
functional 

Z [ h ,  j ]  = I 9[q5]93] exp -1 dx($(V4)2 + $m&52 + $ ~ q 5 ~ x ~  - ihgj -ijx)- ( 3 . 1 2 ~ )  

gives 

The effective action 3 for the x field is a non-polynomial interaction with non-local 
vertices that describes the hard-core effect due to the scale-invariant measure. 

The generating functional W [ h ]  for the connected q5 Green functions is seen, from 
(3.13), to be the sum of vacuum diagrams constructed from the action rll (with 
h-dependent vertices). 

We have already seen in (3.10) that the additional constraint (3.8) has implications 
for mass renormalisation. On analysing the two-point function, we can establish a 
hierarchy in the singularity structure, the most singular contributions being point mass 
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insertions, giving a renormalised mass of the form 

(3.14) 

It is straightforward to see that this series is compatible with the self-consistent 

m 2 =  mi+S(0) /Go(O;  m 2 )  (3.15) 

that follows from (3.10) on retaining only the most singular pole term and neglecting 
the continuum i.e. on making the approximation 

where L, is the n-link loop constricted from the propagators Go(x ;  mi) .  

mass renormalisation 

p ( a )  = S(a - 2). (3.16) 

We have thus identified the mass renormalisation implied by (3 -8) as arising 
naturally from the hard-core interaction associated with the change of measure. 

Furthermore, we have identified the subtraction procedure of (2.8) with normal 
ordering of ,y in (3.13), i.e. with the preservation of singular contributions in the 
non-polynomial hard-core interaction. From our knowledge of non-polynomial inter- 
actions (and for other reasons) we are unwilling to invoke this. 

3.2. Functional differential equations for the augmented theory 

Consider the translation-covariant branching equations (3.5) and (3.6) for the pseudo- 
free theory (Ao  = 0). They are represented diagrammatically in figure 3. We see that 
the constraint equations (3.5) imply a high degree of factorisation. For example, 

* . .  x p  ; X Y  ). (3.17) 

(3.18) 

(3.19) 

(3.20) 

Gp+2,2(xxx1. - x p ;  x y ) a G p , o ( x l .  x p ) S ( x - y )  (3.21) 

(at the level of leading singularities). 

level of leading singularities, Z’[h,  j ]  factorises as 
These factorisations, and more, can be achieved by assuming that, again at the 

Zb [h, il -H[hlJ[i l .  (3.22) 
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Inserting this in the pseudo-free version (Ao = 0) of (3.2) and (3.3) gives 

(3.23) 

That is, at the level of leading singularities, we have an effective ‘free’ theory (in the 
sense of no continuum contributions) with mass m satisfying 

(3.24) 

Thus, again by retaining the effects of leading singularities, we have reproduced (3.16). 

3.3. Large-N limit of the O(N)-invariant pseudo-free theory 

The analysis so far has isolated the most singular contributions (to the diagrammatic 
expansion, for example) as driving the underlying physics. This is a common occurrence 
in 1 /N expansions, suggesting that we consider the O(N)-invariant generalisation of 
the single-scalar pseudo-free theory. 

Z’[h]  = 9[4]9h] exp -I dx[3(Vrb)’+~m;rb2+4(77/N)4’X2-ih 43 (3.25) 

by introducing N auxiliary fields x. On taking the large-N limit of (3.25) in the usual 
way we find that the theoryis described by an effective potential V satisfying 

V[rb2, m 2 , a ] / N = f m 2 q 5 2 / N - $ c r ( m 2 - m ~ ) + $  dk lncr(k2+m2) (3.26) 

where m2 and U are auxiliary fields. At the minimum of V, m becomes the common 
mass of the q5 fields, satisfying 

m2 = m;+S(O)/Go(O; m’). (3.27) 

That is, the approximate results (3.15) and (3.23) that follow from (3.16) become 
exact in the large-N limit. Yet again, the large-N limit provides a natural way to 
organise diagrams according to their degree of singularity. 

However, despite the importance of equation (3.27) we have yet to interpret it. 
Suppose the pseudo-free theory is in d space-time dimensions. Treated as the limit 
of a A IC$]” theory as h + 0, the failure of the canonical theory forces us to adopt the 
scale-covariant theory for d > 2n/(n - 2), but a priori it is defined for all d. 

If, as an intermediate step, we regularise S(0) and Go(O; m2)  with the momentum 
cut-off Ikl c A we see that (3.23) can be re-expressed in terms of finite quantities in 
the A -* 00 limit whenever d 3 4. For example, for d > 4 we have 

(3.28) 

with ad, bdfinite, Taking p2 = (mi+adA2)(1  - b d ) - ’  finite as A+CO then makes (3.27) 
well defined, as m 2 = p 2 .  On the other hand, for d < 4  it is not possible to make 
(3.27) well defined. 

We find this first dimension-specific result encouraging since it is in d a 4 dimensions 
that we are most interested. More details are given in 111. 

That is, we generalise the generating function (3.12) to (imposing j = 0) 

J 

8 ( o ) ~ /  Go((); m2)A = adA2 -I- bdm 
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We conclude this section with the reminder that p = 1 (i.e. a scale-invariant 
measure) was crucial in suggesting the dynamical importance of (3.8) as a necessary 
additional piece of information (and enabling it to have a diagrammatic expansion 
via auxiliary fields). 

However, once we have used this equation to motivate the organisation of ultravio- 
let singularities as in the approximations of 99 3.2 and 3.3 we shall see that it is 
straightforward to relax the condition p = 1 in the context of such orderings. Thus, 
for example, (3.27) would be replaced by 

m z  = mg+PS(0)/Go(O, m2). 

The conclusions following (3.27) remain unchanged. 

4. Stability 

We digress to examine one of the global problems of changing the measure. Staying 
with the Euclidean scalar theory we see that, without introducing auxiliary fields, we 
can express Z‘[h]  of (2.1) in a translation-covariant way as? 

Z’[h]= 19 [#J ]exp  -:I d x ( ~ ( V # J ) 2 + ~ m ~ # J 2 + h ~ # J 4 + ~ ~ A S ( 0 ) l n # J 2 - h # J ) .  (4.1) 

That is, the potential has acquired the additional term tPhS(0)  In 4’. Although not 
present in the classical limit A + 0, for all A # 0 it is unbounded below at vanishing 4, 
suggesting that we may have problems with the underlying stability of the theory. 

Since this unboundedness is independent of the hod4 term it.is sufficient to examine 
the stability of the pwudo-free theory. This is the content of IV, which we summarise 
below. 

The main tool for determining stability is the effective potential. There are two 
circumstances in which we can perform explicit calculations. The first is the large-N 
limit of the O(N)-invariant pseudo-free theory that we have already mentioned, and 
which will become increasingly important in our analysis. It is more illuminating to 
rewrite Z’ for this case as 

In the large-N limit we recover the effective potential V of (3.26) (except that the 
last term is multiplied by h) .  

The contribution to V that is of concern is the term 

v,, = $ N / ~ A S ( O )  In U (4.3) 

where U is formally related to &* and m 2  by 

42 dk (T=-+h - 
N k 2 + m 2 ’  (4.4) 

If we were to set h to zero in (4.4) we would reproduce the N h  In 4 2  term that would 
be a signal for instability. However, for h # 0, U diverges positively and is driven 

+ W e  differ from (2.1) in restoring h (set to unity previously) and replacing ihq5 by h~$,  for reasons that 
will become clear later. 
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away from zero. Whether the instability is avoided or not depends on our ability to 
renormalise the effective potential V. (So far we have only examined the renormalisa- 
tion of the equation (3.27) for the minimum of V.) 

For d 3 4  dimensions it is possible to renormalise V. To see this we note that the 
auxiliary field m 2  in (4.4) is constrained to satisfy 

m2 = mg+pAS(O)/u (4.5) 

= mo+ 2 Go(O; P m  m2)(1-hNGo(O; ” m2) +O(Gn2)).  

Regularising with a momentum cut-off lkl < A  as before in d dimensions 

(4.6) 

etc. 

and third terms in (3 .26) .  This gives 
Thus, for d > 4 dimensions m2 becomes t&2 independent as A -* CO, as do the second 

~ ( 4 ~ )  = +m242 (4.8) 

with m 2  satisfying (3.27). That is, the large-N effective potential for the pseudo-free 
theory is that of a free theory of mass m. The instability is genuinely avoided. For 
d < 4  dimensions it is not possible to renormalise?. This dimension dependence is 
again encouraging. 

Although the large-N limit (as the precursor to a 1/ N expansion) is potentially 
the most productive approach, we should not neglect any avenue at this stage. The 
second situation about which we have some knowledge is the ‘strong-coupling’$ limit, 
in which we expand about the IVM (see paper 11) for which p = 1. If we were to adopt 
the over generous analytical regularisation scheme of Kovesi-Domokos (1976) we 
can calculate the effective potential of the strong-coupling theory exactly, since it 
corresponds to a tree theory. At the least, this may be an important part of the whole 
picture. Again, instability is avoided by virtue of the operator product expansion 
implied by the scale-covariant formalism. For constant source j (which is all that is 
needed to define the effective potential) the generating functional W[j] for connected 
Green functions is itself of exponential form 

W[j] = ahb loa $[cosh(uj/h)- 13 exp(-bfi2u2/2h) (4.9) 

where f i 2  is related to mi by b e E 2 =  8(O)mg with b an arbitrary mass scale. 

V(q5) is bounded below. That is, again we have no sign of instability. 
From (4.9) it follows that q5 = SW/& is monotonic and that the effective potential 

t For d = 4 we also reproduce equation (4.8). 
$ In this case, the large m$ limit. 
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Furthermore, we note that the pseudo-free theory (with the regularisation of 
Kovesi-Domokos (1976)) reduces to the free theory of a scalar field on taking the 
limit bh  + 00. This can be understood as either corresponding to working at energies 
very much lower than the mass scale b, or as moving away from the classical limit 
h = 0. i.e. the high-temperature expansion. 

So far we have only discussed the Euclidean theory, arguing that stability is related 
to the boundedness of the Euclidean effective potential. This is not strictly true, since 
the effective potential only has the interpretation of an energy density for the Mink- 
owski theory (Coleman 1975). 

In the large-N limit nothing changes on going from the Euclidean to the Minkowski 
theory. The effective potential remains real and the potentially dangerous origin of 
a space is avoided by virtue of the ‘quantum corrections’. 

The situation is not so clear in the ‘strong-coupling’ limit, for which there is more 
than one way of continuing. If we accept the regularisation scheme of Kovesi-Domokos 
(1976) exactly, one possibility that arises is that the effective potential V does indeed 
possess a branch with the In q5’ singularity that we wish to avoid. However, the 
mechanism for avoiding instability exists in principle in that the effective potential 
displays another branch (bounded below) akin to the branch of the Euclidean theory. 
Only if the regularisation of Kovesi-Domokos (1976) is exact is tunnelling inevitable. 
Because of the lack of any problem in the large-N case, we assume that there is no 
real problem here, although we have no knowledge of how to include terms absent 
in Kovesi-Domokos (1976) that could, for example, give rise to a phase transition. 

5. The interacting scale-covariant theory 

So far our analysis has essentially been restricted to the pseudo-free theory. In general 
we do not know how to incorporate a Aq54 self-interaction. The pseudo-perturbation 
expansion requires a greater knowledge of the pseudo-free theory than we possess. 

However, the large-N limit discussed in the previous sections suggests a way 
forward since we know that, for the canonical A (42)2 theory, it resums the most 
singular self-interaction diagrams (Coleman et a1 1974). The large-N limit (as a first 
step in a 1/N expansion) for the interacting scale-covariant theory can therefore be 
expected to pit the most singular terms of the self-interaction against the most singular 
terms of the ‘hard-core’, in an additive way. With luck, the weaker can be subsumed 
in the stronger using conventional 1 / N  renormalisation techniques. 

As a first step, we wish to determine the equations for the ground-state of the 
large-N limit of the O(N)-invariant theory with 

+ ( A ~ / N ) ( ~ ’ ) ’ + ~ A P N ~ ( O )  In ( ~ ’ / N ) + ~ I I  - 41. (5 .1)  

Since (5.1) is now translation covariant it is permissible to introduce yet a further 
auxiliary field to replace (42)2 by a Yukawa interaction in the standard way’, 
whereupon the c$ integration can be performed. 

i It is easy to see from Nouri-Moghadam and Yoshimura (1978b) that the scale-covariant Ab4 and Yukawa 
theories are inequivalent. 
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On taking the large-N limit the self-consistent mass renormalisation equation now 

(5.2) 

The first two terms in this tree theory describe the Hartree-like mass gap of the 
canonical theory, to which is added the hard-core contribution. This addition is the 
remarkable property of the 1/N expansion that we had anticipated. 

We have already seen that our ability to make sense of the pseudo-free equation 
(3.27) was dimension specific. It will be even more so for (5.2). 

On imposing the momentum cut-off lkl< A, we see that (neglecting logarithms) 

becomes t 
m2 = mg+4AohGo(0, m2)+PS(0)/Go(0,  m2).  

mz = mi + A ~ o ( A ~ - ~ )  + o ( A ~ )  (5.3) 

where d is the number of space-time dimensions. Thus, for the more interesting case 
of d > 4 ,  the hard-core is less singular than the self-interaction. If the large-N 
expansion enables us to control the ultraviolet divergences of the self -interaction, the 
hard-core may present only minor difficulty. 

In general, it is well known that the 1/N expansion is less singular than the R 
expansion. For the case in point it is known (Rembiesa 1978) that the 1 /N expansion 
is renormalisable in d < 6 dimensions, but not for d 3 6t. 

We thus have three possibilities. 
(i) d 2 6 dimensions. In this case the pseudo-free equation (3.27) is renormalisable 

but the interacting equation (5.2) is not. 
(ii) 4 c d  < 6  dimensions. In this case both the pseudo-free equation (3.27) and 

the interacting equation (5 -2) are renormalisable. 
(iii) d < 4  dimensions. In this case the pseudo-free equation (3.27) is not renor- 

malisable but the interacting equation (5.2) may be, the self-interaction regularising 
the more singular hard-core. 

We find that the interacting equation (5.2) is renormalisable for d = 3 , 4 , 5  when 
it can be expressed in the form 

m2 = g 2  +4A AGR(0, m2)  (5.4) 

with  mi, Ao, A), A(m& Ao, A) finite in the A + c o  limit and G R  the finite part of GO. 
That is, the hard-core effect has been absorbed into the self-interaction. Whereas A 
is zero for A. zero in d = 4 , 5  dimensions it is not defined for zero A0 in d = 3 dimensions. 
Details are given in V. 

For A # 0, equation (5.4) is the conventional (canonical) large-N mass gap equation. 
Of course, the renormalisation of (5.2) is just a first step. The next step is to 

renormalise the whole effective potential. The situation is more complicated than for 
the pseudo-free theory, and details are given in V. We confine ourselves to a few 
brief comments. 

Firstly, the ultraviolet singularities of the ‘hard-core’ interaction can be absorbed 
into the self-interaction for d = 3 , 4 , 5  dimensions for the whole effective potential in 
the large-N limit. 

t The equations giving rise to (5.2) cease to be consistent if we drop the kinetic term. This explains the 
unorthodox explicit N-behaviour demanded of the IVM (Klauder and Narnhoffer 1976). Equation (5.2) 
is the large-N limit of (2.12). 
$From Klauder’s viewpoint it is incorrect to assume that the canonical theory exists in d > 4  space-time 
dimensions. The 1 /N  expansion in d > 4 dimensions can therefore be understood only in the above context. 
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For d = 4 , 5  dimensions we find that, after this absorption, the large-N effective 
potential is just that of the ‘canonical’ theory (Coleman et a1 1974, Rembiesa 1978). 
That is, there is no p dependence. On the other hand, for d = 3 dimensions the 
effective potential is p dependent, despite the p independence of the ‘mass-gap’ 
equation. This allows the possibility of a p-dependent phase structure. 

Yet again we have a dimension-specific result that indicates that the non-canonical 
scale-covariant quantisation is unambiguously possible only when it is obligatory?. 
However, we accept that there are problems with the large-N limit for d =4 
dimensions (Linde 1976). 

Secondly, we can extend the results to incorporate A (4’)’ theories. In general we 
find that the hard-core ultraviolet singularities are less singular than those of the 
self-interaction (in the large-N limit) only when the h expansion would be non- 
renormalisable. 

Finally, even this success is just the first step in constructing a fully renormalised 
series in 1/N. We accept that the canonical 1/N expansions can be problematical 
(Linde 1976). Insofar as the non-canonical scale-covariant series differs from the 
canonical series such difficulties are potentially avoidable. 

However, it is possible that for A. # 0 both canonical (translation-covariant) and 
non-canonical (scale-invariant) quantisations give rise to identical 1/N series for d > 4 
dimensions, despite the very different structure of the branching equations. This could 
happen if the heuristic identity (Ao  # 0 )  

that we used to motivate the ideas of discontinuous perturbations (Klauder 1979b) 
is respected by the 1 / N  expansion$. 

This possibility is currently under investigation. Nonetheless, we are beginning to 
make quantitative analytic progress for a class of theories that, until now, have been 
notoriously elusive. 
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